Computing Beyond Turing

How neocortical theory can lead to machine intelligence

Stanford Computer Forum April 15, 2009 Jeff Hawkins Numenta

What Does Cortex Do?

World Senses Cortex

What Does Cortex Do? - It builds a model of the world -

WorldSensesCortex(causes)(model of causes)

What Cortex Does

Discovers causes in the world
 Infers causes of novel input
 Predicts future
 Creates motor behavior

- Knowledge is distributed hierarchically
- Self training through changing sensory patterns
- Each region is similar

- Knowledge is distributed hierarchically
- Self training through changing sensory patterns
- Each region is similar

Hierarchical Temporal Memory

Each node

- Learns common spatial patterns
- Learns common sequences

Sequence names passed up Predicted spatial patterns passed down

Creates hierarchical model of causes Bayesian methods resolve ambiguity

Belief Propagation In an HTM Node

Belief Propagation Equations In an HTM Node

1) Calculate likelihood over coincidence- patterns.	$y_t(i) = P(\bar{e}_t c_i(t)) \propto \prod_{j=1}^M \lambda_t^{m_j}(r_i^{m_j})$ where coincidence-pattern c, is the co-occurrence of	(4.1) r ^{m1} ,'th					
	Markov chain from child 1, $r_i^{m_2}$ 'th Markov chain from child 2,, and $r_i^{m_M}$ 'th Markov chain from child M .						
2) Feed-forward probability over Markov chains (tem-	$\lambda_t^k(g_r) = P({}^-e_0^t g_r(t)) \propto \sum_{c_i(t) \in C^k} \alpha_t(c_i, g_r)$	(4.2)					
poral groups) using dynamic	$\alpha_t(c_i,g_r) = P(\bar{}e_t c_i(t)) \sum_{t=t} P(c_i(t) c_j(t-1),g_r)\alpha_{t-1}(c_j,g_r)$						
programming	$c_j(t-1) \in C^n$	(4.3)					
	$\alpha_0(c_i,g_r) = P(\bar{\ }e_0 c_i(t=0))P(c_i(t=0) g_r)$	(4.4)					
3) Calculate the belief dis- tribution over	$Bel_t(c_i) \propto \sum_{g_r \in G^k} P(g_r ^+ e_0) eta_t(c_i, g_r)$	(4.5)					
coincidence patterns	$\beta_t(c_i, g_r) = P(-e_t c_i(t)) \sum_{\substack{i, (t-1) \in C^k}} P(c_i(t) c_j(t-1), g_r) \beta_{t-1}(c_j, g_r)$						
	$\beta_0(c_i, g_r) = P(-e_0 c_i(t=0)) P(c_i(t=0) g_r, +e_0)$	$(4.6) \\ (4.7)$					
 Calculate the messages to be sent to child nodes. 	$\pi^{\textit{child}}(g_m) \propto \sum_{i \neq i} I(c_i) Bel(c_i)$ where	(4.8)					
	$I(c_i) = \begin{cases} 1, \text{ if } g_m^{child} \text{ is a component of } c_i \\ 0, \text{ otherwise} \end{cases}$	(4.9)					

NuPIC, Numenta Platform for Intelligent Computing

1) Run time environment

3) Learning Algorithms

Pictures: Simple Vision System (32 x 32 Pixels)

DOG	DUMB BELL	ENGLISH A	ENGLISH T	HELICOPTER	MUG	ENGLISH E	ENGLISH Q	ENGLISH S	САТ
	Ю	Ħ	H	ዮ	ŀ	Li	C]	5	90
مريد -زار	ςΩ				Ĩ	لبل	()		
			F	μĊ	()	<u>ل</u> ــا	£}	ţ,ſ٦	L)
d for		Ĺ,		÷¢ C≯€	ר ביים קיים קיים ביים קיים ביים	i.J	\bigcirc	ļ L	Ð
	90	مېنېد. مېنېدل	+***		J			į	: %

Static inference (with noise)

Time based inference (with noise)

19%

Static inference (with noise)

Time based inference (with noise)

19%

Static inference (static noise)

Time based inference (with noise)

19%

Static inference (with noise)

Time based inference (with noise)

Time based inference (with dynamic noise)

19%

52%

HTM Vision In Digital Pathology - discriminate glands from other structures -

Not glands

Glands

Promising Early Results

- We trained a network to recognize glands
 - Training set: 195 images of glands and non-glands
 - Test set: 80 novel images
- Result: test set accuracy was 95%
- The four errors were "reasonable"

Illusory Contour

Illusory Contour

Illusory Contour

HTM Application Areas

- Medical: Digital pathology
- Voice: Speaker/gender id
- Security: Video behavior recognition
- Auto: Lane change prediction

- Banking: Fraud detection
- Web: Analytics
- Pharma: Drug discovery
- Networks: Attacks and Failures
- Gaming: Motion capture inference
 Visual object editor
- Semantic analysis of text

Technical Challenges

- Algorithms
 - Sequence Memory algorithms
 - Attention mechanisms
 - Feedback
 - Sensory pre-processing
- Performance
- Silicon vs. software

To Learn More

- Read "On Intelligence"
- Sign up for Numenta newsletter
- Download demo applications
- Download NuPIC
- Attend HTM workshop June 25, San Jose, CA
- Internships or employment at Numenta
- jhawkins@numenta.com

